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1.  VULNERABILITY OF MEDITERRANEAN

MARINE ECOSYSTEMS TO CLIMATE CHANGE

The effects of climate change associated with
human activity are starting to be detected in marine
ecosystems of all the world’s oceans  (Hoegh-
Guldberg & Bruno 2010). The wide range of pro-
cesses that are affected by climate change (e.g. mete-
orological, chemical, biological), however, make it
very difficult to predict the magnitude and rate of its

effects. Only an extensive knowledge of how the sys-
tem operates will allow us to understand, interpret
and predict the consequences of climate change.
However, there is still very little information avail-
able on marine ecosystems, far less than there is on
land ecosystems, which is mainly due to the obvious
difficulties involved in studying the sea.

Several distinctive features make the Mediter-
ranean Sea particularly sensitive to climate change.
The Mediterranean Sea has only a narrow connec-
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ABSTRACT: The Catalan Sea, located between the eastern Iberian coast and the Balearic Islands,
is a representative portion of the western Mediterranean basin and provides a valuable case study
for climate change effects on Mediterranean ecosystems. Global warming is reflected regionally
by a rise in sea level over the last century, an increase in surface temperature of around 1.1°C in
the last 35 yr, a progressive salinisation of intermediate and deep waters and a strengthening of
the stratification. A likely scenario of what we can expect in the Mediterranean Sea is a consider-
able decrease in rainfall and wind, warmer surface waters and a prolonged stratification period.
The effects on Mediterranean ecosystems are evident in: (1) a meridionalisation of the algal, inver-
tebrate and vertebrate species, which favours the more thermophilic species over the temperate
species; (2) mass mortality events of sessile invertebrates of the coralligenous communities owing
to anomalous warm waters during the period when food is scarce; (3) increases in the smallest
phytoplankton due to the prolongation of the water stratification period; (4) proliferation of gelati-
nous carnivores, including jellyfish, due to the temperature rise and the lack of rainfall; (5) a faster
acidification of seawater, compared with the global oceans, accompanied by a decrease in the
capacity to absorb atmospheric CO2. In order to anticipate and mitigate these predicted changes,
we recommend investing in research and observation, conserving areas that serve as indicators
of climate change and reducing other anthropogenic pressures such as habitat destruction, over-
fishing or pollution, which may act synergistically to accelerate these changes.
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tion with the Atlantic Ocean through the Strait of
Gibraltar, an artificial connection with the Red Sea
through the Suez Canal and a connection with the
Black Sea through the Bosphorus Strait. The hot
dry summers and scarcity of river inputs make the
Mediterranean Sea a concentration basin. During
winter, the intense cooling and evaporation of At -
lantic surface water increase its density, which causes
this water to sink in the northern parts of both the
western and eastern Mediterranean basins. In the
eastern basin, the formation of Levantine Intermedi-
ate Water (at ~300 to 400 m) plays an important role
in the functioning of the whole Mediterranean Sea,
as it is involved in the formation of deep waters in the
Aegean Sea, the Adriatic Sea, the Tyrrhenian Sea
and the Gulf of Lion (Millot & Taupier-Letage 2005).
The small size of the Mediterranean Sea also sug-
gests that the impact and rate of climate change will
be large and rapid. The average water depth is
around 1500 m, and the renewal rate of deep water is
relatively fast, between 15 and 50 yr (Bethoux et al.
2002, 2005), compared with that of the world’s oceans
(from centuries to millennia for the North Atlantic
and world oceans, respectively, Broecker 1979, 1980).
Heat and CO2 penetration is therefore very rapid
(Rixen et al. 2005, Touratier & Goyet 2009), and the
effects of these changes on marine organisms may
become apparent rather quickly.

Another characteristic of the Mediterranean Sea is
its oligotrophy, i.e. its very low availability of macro -
nutrients (nitrate, phosphate, silicate) in the surface
waters. This is because the Mediterranean Sea receives
Atlantic surface waters (poor in nutrients) through the
Strait of Gibraltar, while it exports, through this strait,
deep Mediterranean water rich in remineralized nu-
trients. This makes the Mediterranean Sea a  nutrient-
poor system with limited productivity. Within this con-
text of oligotrophy, the meso scale phenomena (fronts
and divergences) of the western basin lead to con -
siderable regional fertilisation. The degree of oligo -
trophy gradually increases from the western to the
eastern basin, comparable with the productivity gra-
dient, which is 3.3 times lower in the eastern basin
(Krom et al. 1991, Turley et al. 2000). These dif fer -
ences in productivity lead to varying diversity and
quantity in fishery production and the biomass of
 benthic organisms (Danovaro et al. 1999).

The Mediterranean Sea also contains high biologi-
cal diversity. Although it occupies only 0.82% of the
global ocean surface, it contains 6.3% of all de -
scribed marine macrophyte and metazoan species
(Coll et al. 2010). Within the Mediterranean Sea,
67% of the species are found in the western basin.

Currently, the mean percentage of native species is
20.2%. The highest proportions of endemism are
found in sponges (48%), ascidians (35%), echino-
derms (23%), bryozoans (23%), macrophytobenthic
species (22%) and fishes (12%). Changes in climate
exert a central role on marine species (Hawkins et al.
2003) because they cause direct effects on the organ-
isms and their biotic interactions. Furthermore, the
indications for a rapid rate of change in an area with
a very high proportion of endemic species (20%)
suggest that the potential impact of climate change
on the overall diversity of Mediterranean ecosystems
could be high. Mediterranean sessile invertebrates
may be among the most affected because many of
them exhibit limited dispersal abilities (Duran et
al. 2004, Blanquer & Uriz 2010, Ledoux et al. 2010,
Mokhtar-Jamaï et al. 2011). Mobile taxa such as
fishes may be less affected because, although a rela-
tively high degree of population structure has also
been observed in some littoral fish species (Carreras-
Carbonell et al. 2006), many display differentiation at
distances of hundreds to thousands of kilometers and
in rel ation to oceanographic fronts (Patarnello et al.
2007, Galarza et al. 2009). However, risk of extinction
has been identified in motile species dwelling in
highly fragmented habitats (Lejeusne & Chevaldonné
2006).

At the same time, large scale climatic variability is
one of the most determinant factors of the availability
of resources for marine ecosystems. In the Mediter-
ranean Sea, the interannual temperature, wind pat-
terns and rainfall regimes are affected by the Atlantic
climate, which can be represented by a recurrent
pattern of climate variability known as the North
Atlantic Oscillation (NAO). Although the NAO index
has been used widely in Europe, other regional
indices have been developed for the Mediterranean
given that the NAO only weakly explains the climate
variability over this sea. The Mediterranean Oscilla-
tion (MO) relates to the difference in pressures
between the North Atlantic Ocean and the south-
eastern Medi terranean Sea (Supić et al. 2004) and
the Western Mediterranean Oscillation (WeMO) is
defined from the difference in pressures between
San Fernando (south of Spain) and Padua, Italy (Mar-
tin-Vide & Lopez-Bustins 2006). The WeMO index
explains the rainfall events in autumn and winter
(López-Bustins et al. 2008) better than does the NAO.
As there are few time series of data that are long
enough, the  connections observed between ecosys-
tem dynamics and medium-term climate variability
are the best indicators for understanding the re -
sponses to global warming at larger scales.
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Climate change is by no means the only cause of
transformation in Mediterranean coastal ecosystems.
There are many intense anthropogenic pressures:
overfishing, habitat destruction, increased abun-
dance of alien species, alteration of rivers inflow and
pollution (Ballesteros 2006, Klein & Verlaque 2008,
Coma et al. 2011). At present, habitat destruction is
considered the main threat for a wide variety of taxo-
nomic groups in the Mediterranean. However, cli-
mate change is predicted to become progressively
more important (Ballesteros 2006, Coll et al. 2010)
due to the inertia of the phenomenon and the risk of
exceeding several thresholds (Rockström et al. 2009).
Potential synergies with these additional stressors
are still largely unknown.

In the present study, we focus on the Catalan Sea
(northwestern Mediterranean), defined by the east-
ern Iberian coast north of Cape La Nau and the
Balearic Islands (Fig. 1). Whilst most of the Mediter-
ranean Sea is oligotrophic, this is a relatively produc-
tive area (Estrada & Margalef 1988). The Catalan Sea
presents a cyclonic circulation with a permanent
southwestward current, the Northern Current (also
known as the Liguro−Provençal−Catalan Current),
which flows from the Ligurian Sea (off northwest Italy)
to the Catalan Sea and follows the continental slope.
In the Channel of Ibiza, the Northern Current splits
and one branch flows eastward along the Balearic
Islands (Castellón et al. 1990) forming the Balearic
front that separates the central waters of the Catalan
Sea from modified Atlantic waters (Font et al. 1988).

In the following sections we first describe the most
characteristic trends in the evolution of particular
marine physicochemical variables and discuss the
existence of significant changes in recent decades
and their relationship to global climate change. We

then select some communities and ecosystems that
we consider are most representative or have the
largest ecological, social and economic impact in the
area of study. For each of these systems, we first pre-
sent the evidence of changes in them that have
occurred as a result of climate change, and then
highlight the most likely future trends for organisms
in these sytems in the Catalan Sea.

2.  THE GEOPHYSICAL ENVIRONMENT:

IS THERE EVIDENCE OF CHANGE?

To detect changes in the marine environment and
be able to quantify their magnitude, it is necessary to
have time series of key physicochemical parameters
(e.g. temperature, salinity). Only then, by analysing
statistically the variability over time, are we able
to provide evidence for the existence of changes.
Although there is a considerable network of meteo-
rological stations on the land, comparatively little
data exist for seas and oceans, which is mainly due to
logistical  difficulties in establishing a similar network
in this environment. In the following section, we
briefly re capitulate the evolution of seawater temper-
ature, sea level, salinity, stability of the water col-
umn, seawater acidification and marine currents as
well as wave and storm frequency in the Catalan Sea
(see also Table 1).

2.1.  Seawater temperature

On a global scale, as stated in the latest report of
the Intergovernmental Panel on Climate Change
(IPCC), ocean surface temperatures have increased,
on average, by around 0.7°C since the beginning of
the 20th century (Trenberth et al. 2007). Climate
model projections for the 21st century indicate even
larger increases.

Time series data on the coastal Catalan Sea have
been gathered since 1969, and without inter ruptions
since 1974 at L’Estartit. ‘L’Estartit station’, which is
over 90 m deep, is located 4 km from the harbour of 
L’Estartit, Girona, Spain, and 1.7 km east of the
Medes Islands (42° 03’ N, 3° 15’ 15’’ E; Fig. 1). At this
site, sea temperature is measured weekly at several
depths from the surface to 80 m. Measurement of
salinity and sea level, among other variables, com-
menced more recently (Salat & Pascual 2002, 2006).
This valuable time series from L’Estartit station
shows clear intra- and interannual variability of sev-
eral variables. Over the past 35 yr, a trend of increas-
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Fig. 1. Western Mediterranean Sea. Stars: oceanographic 
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ing water temperature can be seen very clearly at all
depths studied (Fig. 2, Table 1).

Other datasets also depict this increasing trend in
temperature over the last decades. For example, cli-
matological analyses of temperature data from the
Mediterranean show an increase of around 0.5°C in
the first 150 m of the water column between 1985 and
2000 (Rixen et al. 2005). At l’Estartit station, temper-
atures have increased around 1.1°C in the uppermost
waters (0 to 50m) and around 0.7°C at 80 m over the
last 35 yr (Figs. 2 & 3, Table 1), which is a similar rate
to that inferred from satellite observations between
1985 and 2006 for the western Mediterranean
(0.03°C yr−1, Nykjaer 2009). The change in tempera-
ture in the northwestern Mediterranean Sea in the

last decades seems to be more pronounced than the
temperature increase in the oceans on a global scale.
A recent compilation of temperature time series from
the western Mediterranean Sea, which also includes
L’Estartit station, reveals a consistent warming pat-
tern over the last 40 yr at a very similar increasing
rate (Vargas-Yáñez et al. 2010).

As we describe in the following sections, the tem-
perature increases are critical for many species and
marine ecosystems (Table A1 in the Appendix) and
lead to, for example, changes in the biogeography of
native species, incorporations of new species, mass
mortality events in fragile ecosystems and changes in
the ecosystem’s metabolism and services.

2.2.  Sea level

On a global scale, the sea level increased by
approximately 1.7 to 1.8 mm yr−1 between 1961 and
2003 (Bindoff et al. 2007) and by 3.3 mm yr−1 between
1993 and 2007 (Cazenave & Llovel 2010). According
to the fourth IPCC report, climate model projections
indicate similar or greater increases leading to a rise
in sea level of 0.18 to 0.59 m in the period between
1980−1999 and 2090−2099 (Meehl et al. 2007). How-
ever, this value may actually be a lower limit as the
IPCC AR4 projections do not consider certain insta-
bilities of continental ice associated with coastal glac-
iers. Recent studies that take these instabilities into
account suggest that there will be sea level rises of
0.5 to 1.2 m by the end of this century (Rahmstorf
2007, Cazenave & Llovel 2010).
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Fig. 2. Evolution over time of the mean annual sea tempera-
tures at L’Estartit station from 1974 to 2008. From top to bot-
tom of graph curves represent 0, 20, 50 and 80 m depth, 

respectively

Geophysical variable Location Time period Depth Change Mean rate of Reference
change (yr−1)

Seawater temperature Western 1950−2000 Surface−150 m +0.3°C +0.006°C Rixen et al. (2005)
Mediterranean 1985−2000 Surface−150 m +0.5°C +0.033°C Rixen et al. (2005)
L’Estartit 1974−2008 Surface−50 m +1.1°C +0.032°C Present study

80 m +0.7°C +0.021°C Present study
Western 1985−2006 Surface +0.6°C +0.029°C Nykjaer (2009)
Mediterranean

Sea level L’Estartit 1990−2009 Surface +6.5 cm + 3.4 mm Vargas-Yáñez et al. 
(2008); present 
study

Salinity Western 1950−2000 Surface− +0.035 to 0.04 psu 0.0008 psu Rixen et al. (2005)
Mediterranean bottom

Stability of the water columna L’Estartit 1974−2006 Surface−80 m from 75 to 164 d +1.25 d Coma et al. (2009)

Acidification Western Preindustrial Surface− −0.14 to – Touratier & Goyet 
Mediterranean to 2001 bottom −0.1 pH units (2011)

Currents, waves and storm Catalan Sea 1984−2007 – Limited or in- – Sánchez-Arcilla et 
frequency conclusive data al. (2008)
aPeriod in which 20 m water temperature is >18°C

Table 1. Evidence of change on the geophysical environment at selected locations in the Mediterranean Sea. (–) Data not available
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Reconstructions based on archaeological evidence
show that the level of the Mediterranean Sea has
remained roughly the same over the last 2000 yr, and
only began to rise significantly in the last 100 yr
(Lambeck et al. 2004, Sivan et al. 2004). This change
coincides with the increase in temperature associ-
ated with global climate change.

The sea level values registered at the L’Estartit har-
bour since 1990 show an increase of 3.4 mm yr−1

since 1990 (Fig. 4, see also Vargas-Yáñez et al. 2008).
It seems, however, that the Mediterranean Sea level
decreased from 1950 to 1990, probably as a result
of a prolonged increase in atmospheric pressure
(Tsimplis & Josey 2001, Vargas-Yáñez et al. 2007).

The rise in global sea level is mainly
due to the thermal expansion of
water because of warming and
increases in water mass due to con -
tinental ice melting. However, at a
regional scale the atmospheric pres-
sure plays a very important role:
high pressures make the sea level
fall and low pressures allow it rise
(Gomis et al. 2008). The contribution
of atmo spheric pressure may
account for 20 to 50% of the yearly
sea level variability (Marcos & Tsim-
plis 2008). In the Mediterranean
Sea, the interannual variation in the
atmospheric pressure is influenced by
the NAO, which has effects on the
sea level in the Medi terranean on a
decadal scale (Tsimplis & Josey
2001). A more recent investigation
has shown that there is also a large
correlation between the variations in
sea level in the Mediterranean and
the MO (Gomis et al. 2008).

The sea level record from L’Estartit station, to -
gether with that from Sete and Nice, is consistent
with the long-term record from nearby Marseille,
which has data going back to 1885 (Marcos & Tsim-
plis 2008). However, this record shows some discrep-
ancies with those from the ports of Valencia and
Barcelona since 1992 (Mosso et al. 2009). An assess-
ment of the quality of these and other tide-gauge
records from the Mediterranean indicates some
inconsistencies in the record from Valencia, while
the record from Barcelona, besides reflecting the
more general trend of the area, also records changes
in local conditions (Marcos & Tsimplis 2008).

2.3.  Salinity

Some studies point to a recent worldwide decrease
in the salinity of the oceans (Antonov et al. 2002).
However, these estimations, which are based on a
limited number of observations, contain important un -
certainties (Bindoff et al. 2007). In the Mediterranean
Sea, the present evidence suggests the opposite
trend: that is, the gradual salinisation of the water,
especially in the intermediate and deep layers (more
than 150 m deep) (Rixen et al. 2005, Vargas-Yáñez et
al. 2010). This increased salinity seems to be related
to the general decrease in rainfall and in crease in
evaporation in the Mediterranean area, and to the
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de crease in river flow to the sea due to the construc-
tion of dams and reservoirs (Vargas-Yáñez et al. 2007).

Changes in salinity can be critical for the circula-
tion of ocean currents and the stability of the water
column, and therefore the nutrient contribution from
the deep layers to the photic zone. Such changes can
disturb the structure of the communities of plank-
tonic primary producers and the trophic chains that
feed on them (e.g. Learmonth et al. 2006).

2.4.  Stability of the water column: vertical mixing

and stratification

On a global scale, climate model predictions indi-
cate a progressive stratification of the water column
(Sarmiento et al. 1998). At low latitudes, this is due to
the increase in sea water temperature, which is more
pronounced at the surface than in deeper layers. At
high latitudes, however, it seems that the intensifica-
tion of the water stratification is more related to the
increase in rainfall. Both processes increase the
floatability of the surface waters, stabilise the water
column and make it difficult for surface waters (richer
in oxygen but poorer in nutrients) and deep waters
(the opposite) to mix vertically. These changes have
increased the size of the oligotrophic areas of the
Pacific and Atlantic oceans by 15% from 1998 to 2006
(Polovina et al. 2008), which probably has a relation-
ship with the recently reported decline in phyto-
planktonic productivity over the past century (Boyce
et al. 2010).

In the Catalan Sea, a recent study shows how strati-
fication has intensified over the last decades (Coma et
al. 2009). The data from L’Estartit station indicate that
the difference between the surface and deep water
temperatures has increased over the last 30 yr
(Fig. 5A). In the Catalan Sea, the water column goes
through 2 very different periods: a period of thermal
homogeny from December/January to March during
which the water column is mixed, and a stratification
period from April to November/December during
which a large vertical gradient of temperature and
density is established (Fig. 6). Analysis of the data
from the L’Estartit station time series also shows how
the stratification period has lengthened over recent
decades (Coma et al. 2009). The length of the stratifi-
cation period (here defined as the period in which the
water temperature at 20 m is over 18°C) increased
from 75 to 164 d between 1974 and 2006 with a trend
of 1.25 d yr–1 (Fig. 5B). This phenomenon is not related
to an increase in the freshwater inflows to the sea but
to the increase in temperature (see  Section 2.1).

2.5.  Acidification of the oceans: the twin of global

warming

Together with global warming, the increase in
atmospheric CO2 due to anthropogenic activities is
causing a progressive acidification of Earth’s seas
and oceans owing to the continued oceanic absorp-
tion of CO2. As soon as the CO2 molecules enter the
sea, they participate in a series of chemical equilib-
ria. This translates into (1) an increase in the concen-
tration of hydrogen ions and therefore a decrease in
pH, and (2) a decrease in the concentration of car-
bonate ions, which are the basic components that
 calcifying organisms, such as corals, mussels, cocco -
lithophores and pteropods, use to build their skeleton
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or structure. These organisms are thus expected to
be affected by acidification, as this change would
probably impair their growth. The changes in the
chemistry of seawater due to dissolved CO2 gener-
ated by anthropogenic activities are large enough to
affect other chemical, biological and gas exchange
processes. The possible repercussions of the gradual
acidification of seas and oceans span from the effects
on individual organisms to those on ecosystems and
biogeochemical cycles (see reviews in Fabry et al.
2008, Guinotte & Fabry 2008, and Pelejero et al. 2010).

The oceanic pH is calculated to have already de-
creased an average of 0.1 units (a 30% increase in the
proton concentration) relative to preindustrial levels
(Raven et al. 2005). The projections of the changes in
pH depend on the CO2 that humans emit to the atmos-
phere and the time they take to do so (Zeebe et al.
2008). By the end of the 21st century the predicted de-
crease in pH could be around 0.3 or 0.4 units (Stein -
acher et al. 2009). Paleoceanographic studies show
that changes of this magnitude are un precedented in
at least the last 40 million yr (Pelejero et al. 2010).

The Mediterranean Sea has certain characteristics
that make it especially sensitive and vulnerable to
changes in atmospheric CO2 and gradual acidi -
fication. The residence time of the Mediterranean
deep waters (from 15 to 50 yr in the Algero−
Provencal and eastern basins, re spectively, Bethoux
et al. 2002, 2005) is very short in  comparison with the
Earth’s oceans (Broecker 1979, 1980). This means
that the penetration of anthropogenic CO2, which
could take from centuries to millennia in the Earth’s

oceans depending on the region and
depth, is much faster in the Mediter-
ranean, resulting in earlier changes.
Furthermore, the Medi terranean Sea
is saltier and more  alkaline than the
world’s oceans and therefore has a
greater capacity to absorb CO2. A
recent study that quantified the vari-
ations in the amount of anthro-
pogenic carbon that has entered the
Mediterranean during the last
decade (Touratier & Goyet 2009)
showed significantly higher CO2

penetration levels than those found
for the North Atlantic Ocean
(Vázquez-Rodríguez et al. 2009).
These results suggest that the
absorption of CO2 in the Mediter-
ranean Sea, and therefore the acidifi-
cation of its waters, is occurring more
quickly than in the North Atlantic,

where the highest vertically integrated concentra-
tions of anthropogenic CO2 are found (Sabine et al.
2004). Recently, a first estimation of seawater acidifi-
cation in the Mediterranean Sea identified a pH
decrease of up to 0.14 units in the western Mediter-
ranean Sea since preindustrial times (Touratier &
Goyet 2011), which is of higher magnitude than the
global surface ocean decrease of ~0.1 pH units over
this time period. A recent report has also listed fairly
exhaustively the possible repercussions of the acidifi-
cation of the Mediterranean Sea (CIESM 2008b),
although research in this area has just started.

2.6.  Marine currents, waves and storm frequency

According to the last IPCC report, the frequency of
extreme events (heat waves, droughts, floods, hurri-
canes) on a global scale has increased in recent
decades (Trenberth et al. 2007) and is likely to fur-
ther increase in the future (Meehl et al. 2007). An
atmosphere with more carbon dioxide is—due to its
warming characteristics—a more energetic atmo -
sphere that has a greater capacity to store water
vapour and a higher probability of developing ex -
treme weather. With global warming, the energy of
seas and oceans has also increased, which has been
related to the increase in the length and intensity of
tropical storms and hurricanes recorded since the
1970s (Trenberth et al. 2007). Models predict nearly a
doubling of the frequency of force 4 or 5 hurricanes
by the end of this century (Bender et al. 2010).
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In theory, this intensification of extreme events
should also occur in the Mediterranean region, which
would translate into more sea storms and intense
wave episodes accompanied by the intensification of
winds. The limited data from the few available time
series, however, do not allow us to discern clear
trends in this aspect, even though there have been
several severe storm events in the northwestern Medi -
terranean Sea during the last decades (Sánchez-
Arcilla et al. 2008). Curiously, the future projections
made so far suggest an easing of storms (Lionello et
al. 2008); however, the time series of instrumental
wave measurements, all less than 25 yr in length,
make it difficult to predict extreme phenomena
related to marine dynamics (Sánchez-Arcilla et al.
2008). Nevertheless, an increase in heat waves and
droughts (Beniston et al. 2007) as well as an increase
in extreme rainfall (López-Moreno & Beniston 2009)
seem to be predictable.

Changes in storm intensity and wave events could
affect the marine ecosystems associated with sandy
and rocky bottoms, which are often physically dam-
aged by wave action, particularly during prolonged
epi sodes of easterly winds, locally known as llevan-
tades. These events also have an effect over the
pelagic ecosystem, which is greatly influenced by
ex ternal inputs of kinetic energy (Guadayol et al.
2009).

Climate change could also alter the marine circula-
tion patterns of the Mediterranean Sea, which are
determined by changes in water density more than
by wind effects (Font 1990). The changes in salinity
and temperature mentioned previously could there-
fore lead to alterations in marine currents. Although
important changes in the dynamics of marine cur-
rents have been described, especially deep currents
(see the revision in CIESM 2009), there are still no
specific predictions on the changes we can expect for
the future. For marine ecosystems, changes in the
marine currents could affect, for example, the migra-
tion movements of marine species that rely on being
carried by the current (CIESM 2009).

3.  EFFECTS ON MARINE ORGANISMS

3.1.  Planktonic primary producers and

heterotrophs

Plankton up to 0.2 mm in size comprise most of the
biomass and diversity, carry out virtually all marine
primary production and are the base of the food web
of the pelagic ecosystem. In addition, they act as a

vehicle to cycle the main elements and are responsi-
ble for most of the exchanges of materials between
the sea and the atmosphere (Falkowski et al. 1998). It
is not possible to understand the effects of climate
change on the pelagic ecosystem without under-
standing its effects on planktonic organisms, both
individually and collectively. Unlike the organisms
with more collective biomass on land, which have
relatively long lives and are closely linked to their
place on the land, planktonic organisms have a more
ephemeral dynamic as they are located in a moving,
changing environment. This is especially relevant for
primary producers; the phytoplankton depend on the
hydrography, mainly the stability of the water col-
umn and how it fluctuates over time (Margalef 1978).
These factors not only determine the potential pro-
duction and biomass, they also determine the size
structure, the taxonomic composition, the biogeo-
chemical dynamic and functions of the phytoplank-
ton community. From here, the trophic webs are
structured through bacteria that decompose organic
material, bacterivorous, herbivorous and carnivorous
protists and filter feeders or preying pluricellular
organisms.

The impacts of climate on plankton can be direct,
such as through the effects of temperature and solar
radiation on their physiology and growth substrates,
or indirect, through caloric and kinetic energy inputs
and freshwater inputs, which determine the avail-
ability of essential elements, light and reducing
power (Falkowski et al. 1998). In any case, predicting
the health of Mediterranean marine ecosystems in
response to global warming and other anthropogenic
phenomena inevitably leads to understanding and
predicting the adaptations of the planktonic commu-
nity to the changing environment.

3.1.1.  Evidence of change

Planktonic primary producers (phytoplankton). Most
of the long-standing observations of phytoplankton
biomass and species composition in the Mediter-
ranean Sea are from coastal waters, and thus present
human disturbances other than climate change that
also affect marine ecosystems. Processes like eu -
trophication through coastal discharges, land mobi-
lization and pollution have a potential to affect
phytoplankton development at least as much as cli-
mate does, and separating them is a difficult task.

Between the 1970s and 1990s, a steady decrease
in the water transparency, indicative of increased
phyto plankton biomass, was observed in the Catalan

8



Calvo et al.: Climate change effects on Mediterranean marine ecosystems

Sea littoral (Duarte et al. 1999). This pattern, which
was consistent with the observed trends in the
 Adriatic Sea (Solic et al. 1997, Mozeti  et al. 2010,
Nin<ević Gladan et al. 2010), was not attributed to
climate change but to the rise of nutrient inputs asso-
ciated with the increase in the permanent and tem-
porary human population on the coast. Throughout
the last decade, however, the time series studies in
the Gulf of Naples (Zingone et al. 2010), the Bay of
Calvi,  Corsica (Goffart et al. 2002), and the Adriatic
Sea (Mozeti  et al. 2010, Nin<ević Gladan et al. 2010)
have all shown what seems to be a common decrease
in phytoplankton biomass. In semi-enclosed regions
like the Adriatic Sea, this decrease has been attrib-
uted to reduced eutrophication by lowered nutrient
discharges (Mozeti  et al. 2010). Conversely, in the
Bay of Calvi, which is less productive due to the
influence of Atlantic waters and a lower input of
external energy (wind) and continental waters, the
decrease in the concentration of chlorophyll a (chl a)
at the surface has been steady since the 1970s and has
evolved concurrently with the increase in tempera-
ture between the 1970s and 1990s (Goffart et al. 2002).

The only time series held in open waters of the
western Mediterranean is the DYFAMED station in
the Ligurian Sea (Fig. 1). There, an increase in the
phytoplankton biomass was observed during the
1990s, as inferred from increased concentrations of
chl a integrated through the upper 250 m of the water
column. This region is characterised by deep-mixing
driven by strong winds, which causes light limitation
in phytoplankton growth in winter, despite the pres-
ence of river-discharged nutrients. A lengthening of
the stratification period implies a lengthening of the
productive period, because it alleviates light limita-
tion (Marty et al. 2002).

Therefore the sparse data available suggest that
the potential effects of climate change on the bio-
mass and productivity of phytoplankton largely de -
pends on the littoral environmental pressure and the
existing hydrodynamic regime (Table A1). In near -
shore waters, local perturbations on geochemical
fluxes have a much greater influence than does
 climate. In the open sea (off the shelf), 2 hydro -
dynamic regimes must be differentiated: (1) in the
northernmost sector, the productivity of the season-
ally strongly mixed waters may be increased due to
climate warming as a result of the lengthened strati-
fication period and the consequent alleviation of light
limitation; (2) in most of the Catalan Sea, however,
the lengthening of the already long-lasting stratifica-
tion may prolong nutrient-depleted conditions and
reduce annual productivity.

Besides the trends in the biomass and bulk activi-
ties, it is also important to consider whether there are
changes in the phenology (cycles and timing) and
structure of the phytoplankton communities. In Calvi
Bay, the winter−spring bloom has moved forward
from March to January−February, in line with the
earlier stratification owing to the increase in temper-
ature and sunny days and the decrease in wind
speed (Goffart et al. 2002). In the Ligurian Sea, the
above-mentioned increase in biomass is associated
with important but variable changes in community
structure. During the 1990s, a decrease in diatom
abundance was observed together with an increase
in the contribution of smaller organisms, nanofla -
gellates and picophytoplankton (Marty et al. 2002).
The causes were most probably an uncompensated
increase in new nutrient inputs derived from conti-
nental sources that are deficient in silicate (Béthoux
et al. 2002). In the 2000s, however, strong convective
mixing episodes associated with droughts led to
episodic increases in diatom biomass (Marty & Chi-
avérini 2010). Although both situations resulted in a
general increase in productivity, the consequences of
community structure shifts are important because the
size of primary producers determines the magnitude
of carbon export flows both to the  sediments (impor-
tant for the sea’s role in absor bing atmospheric CO2)
and the higher trophic levels (important for fisheries
and for benthic invertebrates).

On the Catalan Sea coast, the only data that allow
long-term comparisons are the data obtained in
Blanes Bay, Spain, in the 1950s and 1960s by Mar-
galef (1964) and the recent data collected by Scharek
et al. (2007). The comparison shows that, for the
largest phytoplankton (chain-forming diatoms and
dinoflagellates), the dominant species have not
changed; diatoms typical of more northern temperate
waters are found in the bloom at the end of winter,
and dinoflagellates typical of tropical waters are
found at the end of spring and during summer. It is
important to highlight, however, that this perception
of no change in the large dominant species does not
allow us to infer anything about whether there have
been changes in the smallest phytoplankton or in the
size distribution of the entire community.

Zooplankton. In the Balearic Islands, Fernández de
Puelles & Molinero (2008) observed a certain nega-
tive correlation between the positive interannual
temperature anomalies and the abundance of zoo-
plankton. The high NAO periods coincide with lower
zooplankton abundances. In the Ligurian Sea, Mo -
linero et al. (2005) observed phenological changes,
possibly due to climatic causes, that affected the
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structure of the zooplankton community. They found
that the higher NAO phases favour the copepod
 Centrophages and the lower phases favour Temora.
Molinero et al. (2008b) also suggested that the domi-
nance of the positive phases of the NAO since the
1980s has led to the progressive substitution of cope-
pods by gelatinous zooplankton, because the latter
are better filter feeders (more efficient with smaller
phytoplankton) and are better adapted to the stabil-
ity of the water column. This situation is also rein-
forced by the fact that gelatinous zooplankton also
feed on copepods. Conversi et al. (2010) found an in -
crease in zooplankton abundances after 1980, mainly
due to the gelatinous component of the assemblages.

Bacterioplankton. An increase in the abundance of
bacteria has been observed in the Adriatic Sea (Solic
et al. 1997). At the Blanes Bay Microbial Observa-
tory, the bacterial abundance in surface waters for
the last 2 decades (1992 to 2009) does not show a
clear trend through time (Duarte et al. 1999, www.
icm.csic.es/ bio/ projects/ icmicrobis/ bbmo/). Also no
conclusions can be made about the phenology and
composition of the bacterial community because the
molecular techniques used for determining the phy-
logenetic identity of the bacteria and their linkage
with the activity in the ecosystem have only just
developed over the last 7 to 8 yr.

Community metabolism. ‘Community metabolism’
can be defined as the balance between production
and respiration of the entire plankton community as
a whole, which results in a net balance of CO2 fixa-
tion and oxygen production, or CO2 production and
oxygen consumption. Determining community meta -
bolism requires taking continuous oxygen measure-
ments, which can be compared with climatic data,
or carrying out bottle incubation experiments to
 measure primary production and respiration rates, in
which the environ mental conditions can be manipu-
lated to simulate changes associated with climate.

Experiments that confine and manipulate the plank -
ton community, whether in bottles in the laboratory
or in large containers installed in the sea, allow
hypotheses to be tested, although extrapolating the
results to the natural environment of the communi-
ties is problematic. This kind of experimental ap -
proach has shown, for example, that the higher
trophic levels (small zooplankton) are the most vul-
nerable to gradual water warming over a few weeks
(Petchey et al. 1999). Vázquez-Domínguez et al. (2007)
carried out experiments with water from Blanes Bay
sampled monthly over an entire year, and ob served
that with an increase in temperature of 2.5°C, the
carbon respiration of the heterotrophic microorgan-

isms increased without increasing their growth effi-
ciency; that is, in warmer waters the plankton con-
sume more oxygen and produce more CO2. In fact,
temperature is a determining factor of community
metabolism because, at a physiological level, it accel-
erates respiration more than photosynthesis. There-
fore, global warming directly favours plankton het-
erotrophy (net CO2 production). Climate change in
the western Mediterranean Sea, with its hydrograph-
ical consequences, also seems to lead to a decrease in
the export of organic carbon by sedimentation
(Marty et al. 2002). Therefore, it also results in more
recycling close to the surface by respiration, and thus
indirectly accentuates the hetero trophy of the
ecosystem. If we take into account that the solubility
of CO2 also decreases with temperature, we see that
everything points to a loss in the sea’s capacity to
absorb the growing quantities of atmospheric CO2.

3.1.2.  Predicted trends

The tendency in the western Mediterranean Sea
and the Catalan Sea, as in all the world’s oceans,
is for the length and intensity of stratification to
increase with global warming. The climatic variabil-
ity associated with the NAO can be used for pre -
dicting climate changes. The positive phases of the
NAO, which involve higher atmospheric pressures
and temperatures, and decreases in rainfall and wind
force, favour the warming and stratification of the
surface water in the open sea. Warming leads to a
decrease in the solubility of CO2, and the strengthen-
ing of the stratification means that fewer nutrients
arrive to surface waters (Fig. 7). Although the effect
on the annual primary production is not completely
clear, it does seem that these hydrographical
changes will lead to (1) changes in the structure of
the plankton communities and the metabolism of the
ecosystem, which will favour the smallest plankton,
(2) a relative increase in the respiration with respect
to primary production (increase in heterotrophy) and
(3) a decrease in the carbon exported to the seafloor
and fish (Fig. 7). Overall, all these changes diminish
the sea’s capacity to absorb atmospheric CO2.

3.2.  Jellyfish on the coast

Jellyfish are gelatinous planktonic heterotrophic
organisms present in practically all marine envi -
ronments of the world. When the conditions are
favourable, they form dense swarms of individuals.
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In these cases, and understanding that they are very
efficient at capturing prey, jellyfish channel a large
part of the energy absorbed by the pelagic ecosystem
in planktonic secondary production. Jellyfish are
important from ecological and evolutionary perspec-
tives, and in terms of their contribution to biodiversity.
They are abundant as bycatch in the fishing industry,
are a source of obstruction to power plant turbines,
and can have a negative effect on tourism at beaches.
Moreover, there is evidence that the problem will
grow larger with global warming, pollution and
 overfishing (Purcell et al. 2007). Most of the energy
that once circulated through fishes is now processed
by other predators (especially Cnidaria and Cteno -
phora) that fill a gap within the trophic system (Mills
2001). Fishing activity continues to remove large pre -
dators and, as a result, carnivorous zooplankton pro-
liferate. Jellyfish and other pelagic cnidarians are
consumers of ichthyoplankton (i.e. fish larvae and
eggs) in the world’s oceans and seas, including the
Catalan Sea (Lynam et al. 2005, Sabatés et al. 2010),
and thus concentrate in waters where fish reproduce
or lay their larvae and eggs (Purcell & Grover 1990).
Their presence in high numbers is thus detrimental
for fisheries (Brodeur et al. 2002).

In the Catalan Sea coasts, the large jellyfish swarms
observed at the beaches and the growing number of
swimmers stung by these organisms have set off an
alarm signal (Gili et al. 2010). This increase in
jellyfish abundance has been discussed widely in the
media, which has led to the launch of public health
campaigns and environmental monitoring program -
mes. Unfortunately, systematically documented ob-
servations are scarce and relatively recent, which
makes it difficult to study the relationship between
the jellyfish swarms in local waters and climate
change, as has been done in other areas (Purcell et al.
2007). However, the analysis of the existing data, to-
gether with the studies carried out in neighbouring
regions and those climatically similar to the Catalan
Sea, along with the growing knowledge of the life cy-
cle of these organisms, allow us to outline the causes
behind the abundance of jellyfish on the Catalan Sea
coast and determine the most probable future trends.

3.2.1.  Evidence of change

The Zoological Station of Villefranche-sur-Mer,
France, has recorded the presence of the jellyfish,
Pelagia noctiluca, on the coasts of the Ligurian Sea
since the end of the 19th century. Combining these
data with observations documented in other institu-

tions, it was possible to reconstruct a 200 yr time
series (1785 to 1985) of the presence of this species
(Goy et al. 1989). The finer analysis of the period
from 1875 to 1985 showed a certain cyclic nature in
the alternation of years with Pelagia and years with-
out Pelagia. In fact, the contingency periodogram of
this series indicated that approximately every 12 yr
there was a period of 2 to 5 consecutive years when
jellyfish were present. The comparison with climate
data showed that the years with jellyfish coincided
with years with little rainfall, high temperatures and
high atmospheric pressure from May to August, the
reproduction period of Pelagia (Goy et al. 1989). In
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the last 2 decades, it seems that this alternating ten-
dency with a marked periodicity has been modified
and jellyfish intrusions are more frequent. Jellyfish
appearance along the Catalan Sea coast shows
 maxima in abundance every 3 to 4 yr instead of
the previously observed 12 yr period (Gili et al. 2010;
Fig. 8A). Furthermore, similar observations have
been made in areas all over the planet, which sug-
gests that it is a worldwide phenomenon (Purcell et
al. 2007). Over the last 5 yr, there has also been a
change in the dominant species that proliferate on
the coast, with increasing abundance of littoral spe-
cies like Rhizostoma pulmo and the displacement of
offshore species like P. noctiluca (Fuentes et al. 2011;
Fig. 8B). This is because littoral species normally pre-
sent both an asexual phase (polyp) and a pelagic sex-
ual phase (medusa) while offshore species only pre-
sent a medusa stage in their life cycle. The polyp
phase is believed to benefit from increasing temper-
atures, which would enhance polyp survival to the
medusa stage.

Since 2000, and especially in the last 5 yr, an
increase in jellyfish swarms has been observed close
to the Catalan Sea coast along with an increase in the
duration of the blooms. Moreover, there now appear
to be more species that form large swarms. The
 proliferation of jellyfish on the coasts and beaches
depends mainly on 2 factors: (1) the conditions for
growth and reproduction in areas far from the coast,
where the most abundant species reaching the
beaches originate; (2) the transport of the swarms
from the open sea and their accumulation close to the
coast (Sabatés et al. 2010).

Carnivorous gelatinous organisms are particularly
responsive to temperature and climatic oscillations
(Molinero et al. 2008a). The increase in temperature
positively affects both their growth and reproductive
success, which has already been proposed as a direct
cause of the increase in jellyfish swarms in other seas
(Arai 1997, Brodeur et al. 1999). It also seems to be
the reason behind the proliferation in temperate
waters of thermophilic species normally associated
with subtropical waters. An example of the latter
phenomenon is the observation in 2009 for the first
time on the Catalan coasts of the ctenophore, Mne-

miopsis leidyi (Fuentes et al. 2009). The success of
introduced M. leidyi has been attributed mainly to
the reduced competition due to overfished popula-
tions of zooplanktivorous fish and the lack of preda-
tors (Siapatis et al. 2008). The proliferation of other
important invasive species such the cubemedusa
Carybdea marsupialis in the western Mediterranean
Sea have been related to the increase of water tem-

perature and to the increased chances for polyp
 settlement in artificial substrata such as new small
tourist harbours (Bordehore et al. 2011).

However, as mentioned previously, the physiologi-
cal effects of temperature by itself do not explain the
increase in the jellyfish swarms on the beaches and
coasts during summer months. While it is true that,
owing to the reproductive cycle, the blooms of most
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Fig. 8. (A) Total number of jellyfish observations on the
Catalan coast from 1999 to 2011. ‘Observation’ indicates the
presence of jellyfish blooms with more than 3 individuals
m−2. The frequency and location of sightings were constant
over the period of study, with a total of 15 000 sightings dur-
ing the summer months. (B) Distribution of the different spe-
cies of jellies detected on the Catalan coast between 2007 

and 2010
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jellyfish reach maximum abundance between the
beginning of spring and the end of summer, these
abundance peaks are located about 30 to 60 km (20
to 40 miles) from the coast on the limit of the conti-
nental shelf. In these areas, hydrographic conditions
favour relatively higher plankton production than in
the neighbouring, more-stratified, nutrient-poor
waters. In fact, in deep waters of the Ligurian Sea an
increase in gelatinous plankton has been observed
since the 1980s, without the copepods and chaetog-
naths having increased proportionally (Molinero et
al. 2008b, Conversi et al. 2010). For  jellyfish swarms
to reach the beaches there needs to be transport from
the open sea. During the day,  jellyfish are situated in
deep layers of the water  column where they find
more food and avoid visual predators; at night they
rise up to the surface. The evening sea breezes push
the jellyfish towards the coast and beaches, mainly in
the summer. Therefore, the period of maximum
abundance coincides with the period of maximum
intensity of the breezes (Zavodnik 1987).

There is another climatic phenomenon that favours
coastal swarms of jellyfish. In the spring and summer,
freshwater inputs from rivers and aquifers lower the
salinity and temperature, and therefore the density,
of the coastal water. The water density becomes
 discontinuous, which makes it difficult for surface
water, and therefore jellyfish, from the open sea to
reach the coast (J. M. Gili  unpubl. data). The gradual
warming of the Mediterranean climate involves a
warming of the shallow coastal waters in spring and
summer, and the decrease in the rainfall means that
the freshwater inputs are increasingly scarce. This
leads to the early homogenisation of the coastal
waters with water from the open sea, which facili-
tates the wind action and the arrival of jellyfish to
the coast.

3.2.2.  Predicted trends

There is little quantitative data for past or present
jellyfish populations. However, as the quality of the
data improves, and jelly species are correctly identi-
fied, we will see a more accurate view of the
response of gelatinous plankton populations to cli-
mate change. However, some studies and observa-
tions already point to likely future trends. A study by
Molinero et al. (2008a) shows that positive phases of
the NAO favour jellyfish blooms in the northwestern
Mediterranean Sea. These periods have higher tem-
peratures and atmospheric pressures, as well as a
lower rainfall (and therefore less river discharge) and

wind force (Lloret et al. 2001). Together these factors
promote surface warming and stratification in the
open sea, the development of gelatinous carnivores
and their transport towards the coast (Fig. 7). This cli-
matic trend, along with the fact that other anthro-
pogenic pressures (see Section 4) are also un likely to
decrease, points to a progressive increase in the
presence of jellyfish swarms on the Catalan Sea coast
over the upcoming years.

3.3.  The Mediterranean coralligenous community

The coralligenous community is a structure of
 biogenic origin produced by the accumulation of en -
crusting algae in low light conditions. The animal
communities in the coralligenous assemblages vary
according to light, currents, sedimentation processes
and temperature. In the more eutrophic areas such
as the northwestern Mediterranean Sea, gorgonian
corals dominate the community together with a wide
range of other suspension feeders such as sponges,
bryozoans and ascidians. The coralligenous commu-
nity is symbolic of the Mediterranean, and is highly
appreciated by the diving tourism industry. It is bio-
logically important because of its high species diver-
sity (up to 1666 species, Ballesteros 2006) and the
great structural complexity created by some of the
main building species (encrusting algae, gorgonians
and sponges). This complexity contributes decisively
to maintaining the biological diversity. However, it is
a very vulnerable community, due to the longevity
and low turnover of most of the species that consti-
tute it, especially the building species (Coma et al.
1998, Garrabou et al. 2002). These characteristics
lead to slow growth and low recruitment, greatly
reducing the capacity of the community to recuper-
ate when it undergoes disturbances.

3.3.1.  Evidence of change

In recent years, global warming has severely af -
fected marine benthic ecosystems through epidemic
diseases and mass mortalities of the organisms (Har -
vell et al. 1999). The alarm signal sounded in the
coral reef ecosystems during the severe coral bleach-
ing events in 1997 and 1998 (Harvell et al. 2002).
Recently, both the physical and biological evidence
that has accumulated shows that the Mediter-
ranean Sea is suffering the effects of global warming
(Table A1). During the summer of 1999, there was a
mass mortality event of invertebrates that affected
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more than 500 km of the northwestern Mediter-
ranean coastline between Italy and France as well as
the north coast of Menorca (Perez et al. 2000, Coma
et al. 2006). Another mass mortality event with the
same characteristics as that of 1999, but with a larger
geographic extension, occurred at the end of the
summer of 2003, again in the northwestern Mediter-
ranean. In this case the affected area was several
thousand kilometres of coastline from the Gulf of
Naples to the Catalan Sea, including Corsica and
Sardinia, the Gulf of Genoa, the Provençal coast
and the Balearic Islands (Garrabou et al. 2009). In
both events the populations of sessile invertebrate
suspension feeders of the coralligenous community
between 0 and 35 to 45 m depth were the most
affected, especially the gorgonian and sponge popu-
lations (Table 2). The colonial nature of most of these
species means that they can suffer partial mortality,
while the colony still survives. This capacity has
attenuated the effect of mass mortality events on
populations. Nevertheless, in many areas the losses
have been approximately 50% of the gorgonian pop-
ulations (Linares et al. 2005, Coma et al. 2006) and up
to 95% for some sponge populations (Maldonado et
al. 2010, Cebrian et al. 2011). Evidence of increased
recruitment after an event has been observed in
some populations indicating that clear-cut restora-
tion trends may occur (a self-thinning process, the
reduced population favouring the survival of recruits
by decreasing intraspecific competition; Linares et al.
2008a, Cupido et al. 2009) if mass mortality events
do not occur frequently. However, if these events do
become frequent, the effect in decreasing gonadal
output of colonies (Linares et al. 2008b), limiting dis-
persal (Ledoux et al. 2010, Blanquer & Uriz 2010,
Mokhtar-Jamaï et al. 2011) and fragmenting of popu-
lations may drive the population to a threshold where
persistent population decline occurs (Linares 2010).

The causes of the mass mortalities of invertebrates
are related to climate change and its effects. Some
hypotheses on the triggering mechanisms have been
proposed (Cerrano et al. 2000, Romano et al. 2000,
Coma & Ribes 2003, Bally & Garrabou 2007, Torrents
et al. 2008, Coma et al. 2009, Bensoussan et al. 2010,
Lejeusne et al. 2010, Vezzulli et al. 2010) and include:
(1) organisms being exposed to temperatures above
the thermal tolerance level of the species, (2) organ-
isms being exposed to temperatures under their crit-
ical temperatures, but which still cause physiological
stress, and (3) increase in the virulence of pathogenic
microorganisms. The mass mortality events have not
been characterised by physiologically critical tem-
peratures, although we cannot completely dismiss

this possibility, as critically high temperatures could
have occurred locally. Concerning the hypothesis of
virulent microorganisms, even though microorgan-
isms have been found (Bally & Garrabou 2007), they
have been identified as opportunistic (Cerrano et al.
2000, Martin et al. 2002, Vezzulli et al. 2010). The
temperatures at the end of summer during these
events were 3 to 4°C above the average and there
was a stable water column that would have delayed
the vertical mixing that usually occurs at the end of
summer and beginning of autumn. These conditions
are not critical for the organisms, but can cause phys-
iological stress.

Recently, laboratory experiments and field obser-
vations have demonstrated that climate anomalies of
extreme stratification are one of the main causes of
mortality events of certain invertebrate suspension
feeder species of the coralligenous community (Coma
et al. 2009). The mechanism that triggers death is
physiological stress due to energetic limitations. Sum -
mer is energetically unfavourable for these or gan -
isms, due to the high temperatures demanding in -
creased respiration, and low food availability, which
does not allow them to feed sufficiently to meet this
high respiratory demand, causing the organisms to
irreversibly lose biomass. The organisms are able to
support a ‘normal’ duration of energetically adverse
conditions during summer, but not an abnormal
extension of these conditions, particularly if this
extension occurs in combination with unusually high
temperatures. Mass mortality events occurred in
years of prolonged conditions of the period of strong
stratification of the water column (Coma et al. 2009).
Short periods of unusually high temperatures have
been suggested recently as the possible triggering
factor of sponge diseases (Ircinia spp., Maldonado
et al. 2010, Cebrian et al. 2011). However, little is
known about how these patho gens will be affected
by the present environmental changes. The effects
of high temperatures on these organisms are being
studied using stress resistance indicators, such as
thermal shock proteins and the production of chemi-
cal defences (Lejeusne et al. 2010).

3.3.2.  Predicted trends

Mass mortality events have occurred before in the
northwest Mediterranean Sea. In September 1983, a
mass mortality event affected the red coral popula-
tions up to 20 m depth in the Ligurian Sea (Harmelin
1984). Since then, other mortality events, mainly
affecting cnidarians and sponges, have been ob -
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served in the western basin (Table 2). A common
characteristic of the events that occurred until 1999
was their localized distribution, in which damage
affected tens of metres or kilometres. The 1999
episode was the first large regional event recorded
(affecting hundreds of kilometres). The two extreme
regional scale events (1999 and 2003) occurred con-
currently with extreme events of stratification (Coma

et al. 2009). The current warming pattern and the
observation that there is a relationship between the
maximum temperature in summer and the lengthen-
ing of the stratification period (Coma et al. 2009) sug-
gest that there will be an increased probability of
long, hot summers in the northwest Mediterranean
Sea and, therefore, in mass mortality events similar
to those described above. This is consistent with the

15

Year Location Extension Scale Depth Taxon Species Reference
(km) range (m)

1983 La Ciotat (Ligurian Sea) 100 Local 0 to 20 Cnidaria Corallium rubrum Harmelin (1984)
Eunicella singularis

1987 Massala Lagoon 100−101 Local 0 to 18 Porifera Spongia officinalis Gaino & Pronzato (1989)
(northwestern Sicily) Anchinoe paupertas

Portofino (eastern Ircinia variabilis Gaino et al. (1992)
Ligurian Sea)

1992 Medes Islands (north- 100 Local 0 to 13.5 Cnidaria Paramuricea clavata Coma & Zabala (1992)
western Mediterranean)

1993 Sicily (southern Italy) 100 Local 0 to 39 Cnidaria Paramuricea clavata Mistri & Ceccherelli (1996)
1994 Portofino Promontorio 100 Local 0 to 35 Cnidaria Paramuricea clavata Bavestrello et al. (1994)

(Ligurian Sea)
1994−1996 Porto Cesareo 100 Local 0 to 1 Porifera Ircinia spinosula Corriero et al. (1996)

(South Adriatic Sea) Ircinia sp.
1997−1999 Gulf of La Spezia 101 Local Cnidaria Cladocora caespitosa Rodolfo Metalpa et al. (2000)

(Ligurian Sea) Balanophylia europaea Rodolfo-Metalpa et al. (2005)
1999 Coast of Provence 102 Regional 0 to 45 Cnidaria 7 species Cerrano et al. (2000)

and Ligurian Sea
1999 Coast of Provence 102 Regional 0 to 45 Porifera 12 species Perez et al. (2000)

and Ligurian Sea Bryozoa 4 species
Bivalvia 2 species

Ascidiacea 3 species
1999 Provence region (north- 13 to 26 Cnidaria Corallium rubrum Garrabou et al. (2001)

western Mediterranean)
1999 Balearic Islands (north- 0 to 40 Cnidaria Eunicella singularis Coma et al. (2006)

western Mediterranean)
2002 Ischia and Procida 101 Local Cnidaria Paramuricea clavata Gambi et al. (2006)

Islands (Tyrrhenean Sea) Eunicella singularis

2003 Gulf of Genova, 103 Regional 0 to 40 Cnidaria 9 species Garrabou et al. (2009)
Provence coast, Corsica− Porifera 9 species
Sardinia, Gulf of Naples, Bryozoa 2 species
Balearic Islands, Catalan Bivalvia 5 species
coast

2005 Columbretes Islands 100 Local 0 to 16 Mollusca Spondylus gaeropus Kersting et al. (2006)
Barbatia barbata

Arca noe

2005 Phlaegrean Island 101 Local Cnidaria Eunicella cavolinii Cigliano & Gambi (2007)
(Tyrrhenean Sea) Eunicella singularis

Paramuricea clavata

2007 Cabo de Palos−Cabrera 100−101 Local 0 to 45 Cnidaria Eunicella singularis Coma et al. (2007)
Island (northwestern Paramuricea clavata

Mediterranean)
2008–2009 Cabrera Island, 102 Regional 0 to 15 Porifera Ircinia fasciculata Maldonado et al. (2010)

Scandola National Park, Sarcotragus spinosulum Cebrian et al. (2011)
Chafarinas Islands 
(northwestern 
Mediterranean)

Table 2. List of documented mass mortality events of invertebrates in the northwestern Mediterranean Sea. Extension: order of magnitude 
of affected coastline 
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pattern of increasing length of coastline affected by
mass mortality events (Fig. 9). At present, the expo-
sure to temperatures causing physiological stress
under summer low-food conditions appears to be the
main cause of major mass mortality events. However,
the present warming trend forecast indicates a near
future scenario that could increase current late sum-
mer metabolic stress, causing an increased produc-
tion of heat shock proteins and a decrease in the
 production of chemical defences (Agell et al. 2001,
Thomas et al. 2007). These circumstances would
make organisms more susceptible to opportunistic,
residential and pathogenic microorganisms, with an
expected increase in virulence (Coma et al. 2009,
Lejeusne et al. 2010, Vezzulli et al. 2010). Under this
scenario, the exposure of organisms to lethal temper-
atures and susceptibility to opportunistic and patho-
genic microorganisms may be come more frequent.
Regional hydrographic conditions are contributing to
the explanation of the variability in the impact of
mass mortality events in the Mediterranean Sea and
to helping understand why the Catalan coast has,
so far, been less affected than other northwestern
Mediterranean areas (Garra bou et al. 2009, Ben -
soussan et al. 2010). The causal  relationship between
global warming and mass mortality events, rein-
forced by the observed increasing trend in the fre-
quency and intensity of these events (Table 2, Fig. 9),
suggests that there will be huge changes in the com-
position of the Mediterranean coralligenous commu-
nity situated above the summer level of the thermo-
cline. Increased frequency of mass mortality events
suggests that the community may show a tendency to
shift its upper distribution limit to a deeper level.

The effects of extreme events of warming and
stratification on the coralligenous community are

among the clearest observations of biological effects
associated with climate change (Coma et al. 2009). In
this sense, the coralligenous community is one of the
best indicators of climate change in the Catalan Sea
and, in general, the northwestern region of the
Mediterranean Sea (Ros 2009). Thus, given the evi-
dence of limited dispersal of the main building spe-
cies (Blanquer & Uriz 2010, Ledoux et al. 2010,
Mokhtar-Jamaï et al. 2011), there is also an urgent
need to act locally or regionally against the other
 relevant human disturbances, such as trawl fishing
and waste water pollution (see Section 4), that rein-
force climate change effects, if we are to avoid local
extinction processes.

3.4.  Fish populations

The ichthyofauna channels a significant part of the
energy fixed by primary production, structures the
biological community (playing a role at several tro -
phic levels) and contributes to biodiversity (Worm et
al. 2006). Climate change has both direct and indirect
effects on fish populations. Direct effects act on their
physiology and behaviour and indirect effects alter
the productivity, structure and composition of the
marine ecosystems on which fish depend for food
(Brander 2010). Temperature is the most important
abiotic variable governing growth, reproduction and
survival of fishes (Magnuson et al. 1979, Stephens et
al. 1988) and it determines species distribution, since
different species have different fundamental thermal
niches (Magnuson et al. 1979). The western Mediter-
ranean region is characterised by a well defined sea-
sonality, with relatively cold winters in the north and
long hot periods in the south that are almost like
those of subtropical regions. This latitudinal gradient
marks the distribution of the species and their ex -
ploitation: the more thermophilic species are found
along the coasts of North Africa and the southeastern
Iberian Peninsula, while to the north, on the Catalan
Sea coast and the Ligurian Sea, the species present
are typical of colder waters. The most recent climate
change is changing the ‘traditional’ geographic dis-
tribution patterns of fishes.

However, it is difficult to distinguish changes asso-
ciated with climate variability from those related to
other anthropogenic factors. Climate change is an
additional pressure on top of many already experi-
enced by fish stocks, such as fishing, loss of habitat,
pollution and disturbance from introduced species
(Brander 2010). This mix of pressures and forcings
over fish populations, common to the entire planet
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(Pauly et al. 1998), is also affecting the Mediter-
ranean and the Catalan seas.

In addition, these climate- and human-induced
changes in fish populations will have an effect on top
predators like seabirds or cetaceans, whose distribu-
tion, abundance and migration largely depend on
prey availability. An example of both direct and indi-
rect effects of climate change on seabirds is the
northward expansion of the endangered Balearic
shearwater Puffinus mauretanicus. Their expansion
into northeast Atlantic waters was attributed to a
direct effect of warmer temperatures and an indirect
effect through the influence of temperature on the
distribution and composition of zooplankton, which
nourish their fish prey (Wynn et al. 2007, Luczak et
al. 2011). Recently, Gambaiani et al. (2009) high-
lighted the potential effects of climate change, in par-
ticular sea warming and the reduction of prey
resources, on Mediterranean cetaceans such as com-
mon dolphins Delphinus delphis, bottlenose dolphins
Tursiops truncatus or striped dolphins Ste nella

coeruleoalba.

3.4.1.  Evidence of change

There is evidence that Mediterranean biodiversity
patterns are changing and that these changes could
be related to the increasing seawater temperature.
Fish and benthic species from the warm waters of the
southernmost parts of the Mediterranean are extend-
ing their distribution range to the north (e.g. Fran-
cour et al. 1994, Astraldi et al. 1995, Riera et al. 1995,
Bianchi & Morri 2000, CIESM 2008a). More than 30
Mediterranean warmwater indigenous fish species
have now been recorded north of their original geo-
graphical distribution. Similar poleward extensions
have also been recorded outside the Mediterranean
Sea (CIESM 2008a). Conversely, since the 1980s the
abundance of some boreal species has  dramatically
decreased (Quignard & Raibault 1993, CIESM 2008a).

As an example, the ornate wrasse Thalassoma

pavo, a warmwater species that lives in rocky habi-
tats, is now commonly found on the Catalan Sea
coast and the Gulf of Lion, while a few decades ago it
was only found abundantly in more southern areas.
The same is also the case for the pearly razorfish
Xyrichtys novacula, the bluefish Pomatomus salta-

trix, the bastard grunt Pomadasys incisus and the
dusky grouper Epinephelus marginatus (Francour et
al. 1994). In the case of this last representative spe-
cies, sea warming seems to favour their reproduction
in the Catalan Sea (Zabala et al. 1997). Nevertheless,

other factors such as the increase in density of popu-
lations, due to establishment of marine protected
areas in the last 20 yr, and recent modification of the
sex ratio of populations, could have improved their
reproductive success (Bodilis et al. 2003). The warm-
ing of the Mediterranean waters could also modify
species’ migration. Bluefin tuna Thunnus thynnus

and the amberjack Seriola dumerili, for example, have
lengthened their stay in northern and central Medi -
terranean waters before migrating towards their
 winter territories (Bombace 2001).

Recently, an increasing abundance and northward
expansion of the round sardinella Sardinella aurita

have been reported in the Catalan Sea (Sabatés et al.
2006). This species is a thermophilic, small, pelagic
fish particularly abundant in the warm waters of
the eastern as well as in the southwestern Mediter-
ranean basin. A positive relationship was established
between round sardinella catches and temperature
anomalies in the western Mediterranean. A gradual
increase in species abundance was also observed
from south to north, with a certain time lag going
northwards, associated with the increase in seawater
temperature. Furthermore, successful reproduction
of this species on the northern Catalan coast was
reported close to the edge of its distribution range,
confirming its establishment in the new distribution
areas (Sabatés et al. 2009). Concurrently, sprat Sprat-

tus sprattus, a coldwater species and very common
on the Catalan Sea coast in the 1950s (Vives & Suau
1956) has practically disappeared from commercial
landings in the last 25 yr (Catalan Government
unpubl. fishing statistics).

Long-term fluctuations in abundance of small
pelagic fishes in relation to climate variability and
ocean regime shifts have been described in different
regions around the world (e.g. Lluch-Belda et al.
1989, Kawasaki 1992). Small pelagic fishes have a
short life span and feed on a short, plankton-based
food chain, and their recruitment is controlled to a
large extent by egg and larval survival that, in turn,
is dependent on the prevalence of suitable oceano-
graphic and climatic conditions. In the Catalan Sea
coast, the sardine Sardina pilchardus and anchovy
Engraulis encrasicolus are the most abundant small
pelagic fishes. Fluctuations in abundance of these
2 species has been linked to local environmental
 conditions such as runoff  from the Ebre and Rhône
rivers, wind mixing, sea surface temperature and
 surface chl a during the previous spawning period
(Lloret et al. 2001, 2004, Palomera et al. 2007, Martín
et al. 2008). This may be explained by the increase of
planktonic productivity as a result of river inputs, and
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vertical mixing due to wind and low temperature,
favouring spawning, feeding and survival of larvae.
Recently, Martín et al. (2011) indicated that the
WeMO regional index could provide an accurate
representation of the environmental conditions af -
fecting small pelagic fish production in the Catalan
Sea. In this area, the abundance of these 2 species
has fluctuated in synchrony over the last 30 yr.
 Positive WeMO phases, that is, low sea surface
 temperature, increased river flow and strong wind
mixing, are favourable for the overall biological pro-
ductivity in the Catalan Sea. In turn, this set of envi-
ronmental factors would enhance survival and
growth of sardines and anchovies during their life
cycle, thereby increasing their recruitment (Martín
et al. 2011).

The effect of climatic conditions on the dynamics
of exploited populations has also been reported on
demersal resources. Lloret et al. (2001) showed that
Rhône River run-off was negatively affected by high
NAO episodes. Although no relationship was estab-
lished between NAO and fishery productivity of the
northern Catalan coast, catches of different species
were positively correlated with Rhône River outflow
and the wind-mixing index during the previous
spawning season. Thus, periods of low NAO index,
generally coincident with high river run-off, tend to
be more productive, favouring the recruitment and
productivity of exploited stocks (Lloret et al. 2001).
Similarly, in the Gulf of Lion, catches of the common
sole Solea solea were also correlated with floods of
the Rhône River (Salen-Picard et al. 2002) and with
the abundance of polychaetes, their main prey. The
increase in food after flooding events might favor
the different stages of the sole’s life cycle, enhanc-
ing its population size. In the Balearic Islands, Mas-
sutí et al. (2008) demonstrated that regional and
global climate indices, such as NAO and MO, would
influence the population dynamics of hake Merluc-

cius merluccius and the deep-sea red shrimp Aris-

teus antennatus, favouring productivity and benefit-
ing the recruitment of these species. On the Catalan
coast, long-term variability in catches of the red
shrimp and in the composition and diversity of deep
sea communities have also been related to climatic
oscillations (Maynou 2008, Cartes et al. 2009). Low
or negative NAO phases, enhancing precipitation
and river runoff, increased food input to deep ben-
thos, which favour stocks of bottom-feeding species
such as the red shrimp (Cartes et al. 2009). An
enhancement of the recruitment process of this spe-
cies and an in crease of its total landings during the
following years have also been associated with the

formation of dense and cold shelf waters and their
subsequent downslope cas cade inside submarine
canyons, which is a  climate-induced phenomenon
(Company et al. 2008).

Feeding and survival of fish larvae and planktivo-
rous fish may be affected by changes in the abun-
dance and composition of food. Although no series
of planktonic data are available for the Catalan
Sea, Molinero et al. (2005, 2008b) and Fernández
de Puelles & Molinero (2008) provided evidence of
changes in the composition and phenology of the
zooplankton (especially onset dates) associated with
climate change for the Ligurian Sea and the Balearic
Islands. According to those studies, the zooplankton
is less abundant during high NAO phases (see Sec-
tion 3.1.1). This would affect feeding and survival of
fish larvae and subsequent recruitment. A paradig-
matic case in this sense is Atlantic cod Gadus morhua

in the North Sea.  Declines in cod recruitment have
been related to changes in the plankton ecosystem,
due to rising temperatures since the mid-1980s, in a
way that reduced the survival of larval cod (Beau-
grand et al. 2003).

The relationship between recruitment of Medi -
terranean species and local (temperature, river dis-
charges, wind conditions) and global (NAO, WeMO,
MO) environmental conditions indicates the tropho-
dynamic relationship between climate variability and
fishery yields and illustrates how climatic forcing
could influence the dynamics of ecosystem function-
ing at short- and long-term scales.

3.4.2.  Predicted trends

The gradual warming predicted for the Mediter-
ranean Sea, the intense fishing activity and the loss
and degradation of habitat involve changes in the
specific composition and abundance of fish commu-
nities. The progressive establishment on the north-
ern Catalan Sea of species from more southern lati-
tudes also seems to be irreversible; what needs to be
studied is how these fish assemblage modifications
might affect ecosystem function. It is uncertain what
will happen to coldwater species living in the north-
ern and colder areas of the western Mediterranean
basin. Because they cannot move farther north, they
may dramatically decrease in number or even be at
risk of extinction (CIESM 2008a, Ben Rais Lasram et
al. 2010). Moreover, evidence shows that Lessepsian
fish species from the Red Sea have succeeded in
invading the western basin of the Mediterranean Sea
(e.g. Azzurro & Andaloro 2004, Dulçic & Pallaoro
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2004, Daniel et al. 2009) because of global warming
(Raitsos et al. 2010). Consequently, the spatial over-
lap between endemic and exotic fish species may
lead to a reduction in the abundance and, in the
future, a gradual replacement of endemic by exotic
species (Ben Rais Lasram & Mouillot 2009). As those
authors pointed out, this is a key issue in the conser-
vation of biodiversity. In addition, temperature may
also affect sex ratios in fishes, a key demographic
variable crucial for population viability (Ospina-
Álvarez & Piferrer 2008). Although it is still unclear to
what extent a temperature increase may determine
sex ratios in Mediterranean fishes, this effect will
probably be more evident in the populations located
on the geographic distribution limit of the species
(Sabatés et al. 2006).

As indicated above, the predicted increase in water
temperatures, lower wind stress and precipitation
and the consequently higher stratification have also
driven changes in the composition and phenology of
planktonic communities (Molinero et al. 2005, 2008b)
and the population size of gelatinous carnivores (Mo -
li nero et al. 2008a). These shifts may involve changes
in trophic interactions of pelagic communities (Rossi
et al. 2006) affecting the survival and growth of
larvae and planktivorous fishes through effects on
their prey, competitors and predators (Stige et al.
2010). Jellyfish outbreaks, for example, may signifi-
cantly increase predation on fish larvae and competi-
tion with planktivorous fishes (Purcell & Arai 2001,
Sabatés et al. 2010).

The exploited state of Mediterranean fishes can
impair their resilience to climate change perturba-
tions. Recent studies have shown how fishing can
change the demographic structure of commercially
targeted species and, therefore, the ability of popula-
tions to cope with a changing environment (Hidalgo
et al. 2011). In the Mediterranean Sea, a large
 proportion of catches consists of young individuals
(Lleonart & Maynou 2003) and exploitation is highly
dependent on recruitment, making such populations
more sensitive to climate variability. Thus, it is evi-
dent that effects of climate change cannot be esti-
mated without incorporating other human stressors.
Marine ecosystems constitute ‘social− ecological sys-
tems’, including natural and human components,
which are highly interconnected and interactive
(Perry et al. 2010). In this context, it is important to
develop integrated ob servational and modelling sys-
tems to quickly re cognise changes, including those
occurring due to human activity, to provide meaning-
ful and realistic  projections of climate change effects
on natural resources (Barange et al. 2010).

4.  ADDITIONAL ANTHROPOGENIC FACTORS

AND POTENTIAL SYNERGIES

Climate change is only one of the anthropogenic
stressors that are negatively affecting marine or -
ganisms and ecosystems. Additional human-related
pres sures include habitat destruction, overfishing,
pollution and introduction of exotic species, to name
a few. In addition to global warming, the increase in
atmospheric CO2 and its subsequent effect on ocean
chemistry, have potentially negative consequences
for many calcifying marine organisms (Fabry et al.
2008), including coccolithophores, which are impor-
tant producers of calcium carbonate in the Mediter-
ranean Sea. This change in seawater pH also affects
the speciation, stoichiometry and the availability of
essential nutrients (Hutchins et al. 2009 and refer-
ences therein, Beman et al. 2011) and, therefore,
could have an effect on primary productivity. More
acidic conditions are expected to decrease the am -
monia concentration at the ex pense of an increase in
ammonium ions (Beman et al. 2011) and slightly
reduce phosphate ion concentration (Hutchins et al.
2009). In the Mediterranean, which is generally lim-
ited by phosphorous, these changes could accentuate
its oligotrophic character and lead to corresponding
changes in plankton composition.

All these processes and variables have the potential
to interact amongst themselves in different ways, in-
cluding additive, synergistic or antagonistic interac-
tions. Acidification and warming can act synergisti-
cally in worsening the calcification of corals and
crustose coralline algae not only in tropical species
(Reynaud et al. 2003, Anthony et al. 2008) but also
in Mediterranean species (Martin & Gattuso 2009).
Similar to what will probably occur in tropical coral
reefs (Anthony et al. 2011), this combination of factors
will contribute to reducing the resilience of corallige-
nous structures, potentially compromising the biodi-
versity that they contain. Currently, the coralligenous
community is especially affected by trawl fishing
(causing physical damage and increasing  turbidity
and sedimentation; Ballesteros 2008) and by intro-
duced algae species (decreasing light avail ability to
encrusting algae, increasing sedimentation, inhibiting
recruitment and allowing overgrowth of some species;
Ballesteros 2008, Klein & Verlaque 2008, 2009, Ce-
brian & Ballesteros 2009). Simulation studies have
shown that mass mortality events driven by climate
change dramatically reduce the viability of long-lived
and low-turnover structural species of the community
when combined with the effects of these additional
anthropogenic impacts (Linares et al. 2010).
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The growth, reproduction and formation of jellyfish
swarms depend on a set of factors other than those
that are strictly climatic. Jellyfish populations benefit
from overfishing of commercially valuable fish that
feed on the same prey as jellyfish, and over fishing of
large carnivorous fish, along with turtles and sea -
birds, which are natural predators of jelly fish (Pur-
cell et al. 2007). The proliferation of coastal  species is
also related to the settlement of polyps on artificial
structures (Fuentes et al. 2010). This process benefits
resident taxa such as Aurelia species, ar guably the
most widespread blooming jellyfish, and invasive
species, such as the cubomedusa Carybdea marsupi-

alis (Bordehore et al. 2011) whose invasion of the
Mediterranean Sea is particularly concerning. Fish-
ing is an important driver of structural and functional
changes in the ecosystem (Coll et al. 2008) and also
alters the demographic structure of fish populations,
thereby modifying their ability to respond to climate
variability and change (Planque et al. 2010, Hidalgo
et al. 2011). Additional anthropogenic pressures are
found in water management on land, which affects
river discharges (Lloret et al. 2001) and habitat loss
and degradation of waters and substrate necessary
for fish spawning, feeding and growth (García-
Rubies & Macpherson 1995, de Juan & Lleonart
2010). Disentangling the combined effects of climate
change and anthropogenic pressures on fish popula-
tion dynamics is also of central importance for the
understanding of ecosystem functioning, and thus for
the management of exploited resources.

5.  MANAGEMENT, MONITORING AND

RESEARCH NEEDS

The most probable directions that changes in the
ecosystems of the Catalan Sea will take encompass:
(1) the ‘meridionalisation’ of the biota, which favours
the most thermophilic native species and the arrival
of foreign species; (2) the reduction of the biodiver-
sity at higher trophic levels; (3) the disappearance of
the most fragile and long-lived species with a low
turnover, and a reduction in the 3-dimensional bio-
genic structure; (4) the loss of the capacity to recuper-
ate; (5) the dominance of bottom-up controls in
trophic webs in relation to top-down controls; (6) a
reduction in the exported production to the sedi-
ments or to the trophic levels exploited by humans
(Bianchi 2007, CIESM 2008a, Lejeusne et al. 2010).

Environmental assessment and management for
mitigating the effects of climate change on marine
ecosystems is often based on the idea that the effects

are limited in time and the system will be able to
recuperate quickly when the environmental pressure
stops. Many initiatives aimed at making exploitation
of the marine environment sustainable are based on
this premise. Unfortunately, it is necessary to high-
light the limited success of the tools currently used
for managing the exploitation of marine resources.
The progressive collapse of the fisheries around the
world, for example, questions the supposed reversi -
bility of human impacts in the short and medium
term (Pauly & Watson 2005). In the case of climate
change, the supposition of reversibility has been
questioned from the beginning, due to the global
character of climate change, its inertia (even if the
atmospheric composition were held fixed at present
values, the climate would continue to change, due to
thermal inertia of the sea, Wigley 2005) and the non-
linearity of its effects. Of special concern is that when
a threshold is crossed, positive and negative feed-
backs could shift ecosystems to a permanent alterna-
tive state that no longer functions in the same way as
it did in the past (Lenton et al. 2008, Rockström et
al. 2009).

Present evidence indicates that global warming is
affecting the climate and hydrology of the western
Mediterranean Sea and will continue to do so, lead-
ing to substantial changes in the composition and
dynamics of marine ecosystems. Therefore, in addi-
tion to the work necessary for mitigating climate
change and adapting to it, we need to take the
 following action:

(1) Reduce the effect of those disturbing factors we
are more able to control (overfishing, destruction of
habitats, pollution) and that may act synergistically
with climate change to the detriment of marine eco -
systems. Some studies aimed at determining the
effects associated with climate change, such as the
loss of biomass of benthic communities or the expan-
sion of the range of distribution of warmwater spe-
cies, indicate that the effects of climate change would
be attenuated if we were able to reduce the effect of
other disturbing factors (Ruiz et al. 2000, Linares et
al. 2010). This would give us time to develop a more
global action against climate change. However, to
distinguish between the effects of climate change
and those from other kinds of impacts, it is funda-
mental to have protected areas that are not affected
by other anthropogenic factors that can act as base-
lines or ‘controls’.

(2) Monitor the main physical, chemical and bio-
logical variables that are indicators of climate and
environmental changes and the speed at which they
are occurring. This monitoring should be carried out
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systematically along the coast, but especially in pro-
tected areas where, because of  management prac-
tices and the reduction of other impacting factors, we
can discern and assess the effects of climate change.
Time series studies, like the one from L’Estartit sta-
tion and others that are currently underway, are fun-
damental for the understanding of climate change.
The maintenance of these stations, as well as the
establishment of new observatories—which could
take advantage of initiatives to develop automatic
measuring systems in buoys and fixed anchorages—
is imperative. The data collected in time series can be
used to detect and quantify the effects of climate
change, and are vitally important for developing,
testing and validating the climate and oceano-
graphic models with which the climate predictions
are made.

(3) Investigate the mechanisms and processes
through which climate change acts on marine popu-
lations. Our capacity to predict the effects of climate
change on the ecosystem depend on our degree of
understanding of the mechanisms involved. This
means that it is necessary to develop imaginative
approaches to laboratory experimentation, environ-
mental observation and modelling.
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Organisms                                      Documented effects                      Likely related cause or causes              Source

Planktonic primary producers and heterotrophs
Phytoplankton
Coastal assemblages                     Decrease in overall biomass         Reduced eutrophication in the             Mozeti  et al. (2010), 
                                                                                                               last decade                                           Nin<ević Gladan et al. (2010)
Open sea assemblages in             Decrease in overall biomass         Longer lasting and stronger water      Goffart et al. (2002)
strongly stratified waters                                                                    column stratification

Open sea assemblages in             Increase in overall biomass,        Earlier water column stratification       Marty et al. (2002)
strongly mixed waters                 shift to smaller taxa

Zooplankton
Copepods                                       Changes in local species              NAO                                                        Molinero et al. (2005)
                                                        composition 
                                                        Substitution of copepods by        High NAO                                              Molinero et al. (2008b)
                                                        gelatinous zooplankton
Bacterioplankton                           Limited and inconclusive data                                                                     Duarte et al. (1999)

Jellyfish on the coast
Cnidaria
Pelagia noctiluca                           Increase in the frequency            Seawater temperature increase,          Gili et al. (2010)
Rhizostoma pulmo                         and number of swarms               overfishing, human recreation 
Physalia physalis                                                                                   activities
Cotylorhiza tuberculata
Aurelia aurita
Velella velella
Olindias phosphorica
Aequorea forskalea
Phyllorhiza punnctata
Chrysaora hysoscella
Porpita porìts
Carybdea marsupials
Ctenophora
Mnemiopsis leiyi                            Increase in the frequency            Seawater temperature increase,          Gili et al. (2010)
                                                        and number of swarms               overfishing

Coralligenous community
Cnidaria
Paramuricea clavata                      Decrease in gonadal output        Extent of partial mortality,                    Linares et al. (2008b)
                                                        of colonies                                    temperature and stratification 
                                                                                                               increase 
Paramuricea clavata                      Large increase in partial and      Seawater temperature, stratification    Cerrano et al. (2000), 
Eunicella cavolinii                         total mortality                              increase                                                Perez et al. (2000), 
Eunicella sigularis                                                                                                                                                Linares et al. (2005), 
Eunicella verrucosa                                                                                                                                              Coma et al. (2006, 2009), 
Leptogorgia sarmentosa                                                                                                                                      Garrabou et al. (2009)
Corallium rubrum                                                                                                                                                 
Cladocora caespitosa
Balanophyllia italica
Oculina patagonica
Parazoanthus axinellae
Porifera
Spongia officinalis                         Large increase in partial and      Seawater temperature,                         Gaino et al. (1992), 
Ircinia dendroides                         total mortality                              stratification increase/disease            Coma & Ribes (2003), 
Ircinia variabilis                                                                                                                                                     Maldonado et al. (2010), 
Ircinia oros                                                                                                                                                             Cebrian et al. (2011)
Agelas oroides
Crambe crambe
Cacospongia spp.
Hippospongia communis
Petrosia ficiformis
Spongia agaricina
Clathrina clathrus
Aplysina cavernícolas
Reniera fulva

Table A1. Summary of the effects of climate change on marine organisms

Appendix 1. Climate change effects
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Organisms                                      Documented effects                      Likely related cause or causes              Source

Bryozoa
Myriapora truncata                        Large increase in partial and      Thermal anomaly, latent water-           Perez et al. (2000), 
Sertella spp.                                   total mortality                              borne agent                                          Garrabou et al. (2009)
Adeonella calveti
Turbicellepora aviculari
Pentapora fascialis
Bivalvia
Spondylus gaederopus                  Large increase in total mortality  Climatic anomaly;                                 Perez et al. (2000), 
Lima spp.                                                                                               infection by microorganisms              Garrabou et al. (2009)
Arca spp.
Ostrea edulis
Lithophaga lithophaga
Neopycnodonte cochlear
Ascidiacea
Microcosmus spp.                          Large increase in total mortality  Climatic anomaly;                                 Perez et al. (2000)
Halocynthia papillosa                                                                           infection by microorganisms
Pyura dura

Fish and fisheries
Fishes
Thalassoma pavo                           Northward range extension         Seawater temperature increase            Francour et al. (1994), 
Xyrichtys novacula                                                                                                                                                Sabatés et al. (2006)
Pomatomus saltatrix
Pomadasys incisus
Sardinella aurita
Epinephelus marginatus               Enhancing reproduction               Seawater temperature increase,          Zabala et al. (1997)
                                                                                                               Marine Protected Area 
                                                                                                               establishment
Sardinella aurita                            Enhancing reproduction and       Seawater temperature increase            Sabatés et al. (2006), 
                                                        recruitment                                                                                                  (2009)
Engraulis encrasicolus                  Low catches                                   River runoff decrease, sea water         Lloret et al. (2004), 
                                                                                                               temperature increase, low WeMO     Palomera et al. (2007), 
                                                                                                                                                                                Martín et al. (2008), 
                                                                                                                                                                                Martín et al. (2011)
Sardina pilchardus                        Low catches                                   River runoff decrease, sea water         Lloret et al. (2004), 
                                                                                                               temperature increase, wind               Palomera et al. (2007), 
                                                                                                               mixing decrease/ low WeMO             Martín et al. (2011)
Solea solea                                     Low catches                                   River runoff decrease                            Salen-Picard et al. (2002)
Merluccius merluccius                  High recruitment                          Low or negative NAO                           Massutí et al. (2008)
Crustaceans
Aristeus antennatus                       High catches, high spawning      Positive and high NAO and MO          Maynou (2008), 
                                                        stock and abundance                                                                                  Massutí et al. (2008)
Aristeus antennatus                       Variability in catches                    Shelf water cascading events               Company et al. (2008)
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